

Mendip Data Systems Page 1 of 8 Updated 21/02/2019

Move Forms & Controls Example

This example application was developed in response to various forum questions including:
http://www.accessforums.net/showthread.php?t=75572 (ironfelix717)
https://www.access-programmers.co.uk/forums/showthread.php?t=302641 (lana)

Moving (and resizing) objects to precise locations on the screen is very easy using the Move method

expression.Move(Left, Top, Width, Height)

For example, Forms!Form1.Move 100,200,500,350
This moves the top left of Form1 to x-y co-ordinates 100,200 and changes the width and height to 500 & 350
(where all values are in twips – see later)

Similarly, controls can easily be moved on a form.
For example, this code moves Box9 so it is located immediately below textbox Text2:

Me.Box9.Left = Me.Text2.Left
 Me.Box9.Top = Me.Text2.Top + Me.Text2.Height

The example application does both of the above but also demonstrates some much more complex processes.

For example, it shows how:

• A popup form such as a customised zoom box can be moved to a precise position over another form
irrespective of form settings

• A listbox record can be ‘selected’ without clicking on the listbox. This is done by accurately detecting the
record underneath the mouse cursor based on the height of each row in the listbox.
This means the record can be used e.g. to open a filtered form / view an image without actually selecting the
listbox record!

• The x-y coordinates of an object on a form can be determined and the object nudged by a specified amount
in any direction

Each of these has been successfully tested using a variety of situations:

• Navigation bar - maximised/minimised/removed

• Ribbon - maximised/minimised/removed

• Application window – maximised / restored

• Different screen sizes and resolution

• Enlarging the screen display setting from the default 100% to 125%

Different form conditions have been tested including:

• Border style – none / thin / sizable / dialog

• Scrollbars – none / horizontal only / vertical only / both

• Navigation button bar – visible / hidden

• Record selectors – visible / hidden

• Different fonts – font name / point size & style (bold / italic / underline)

NOTE:
It is NOT possible to hide the application window for this example.
Doing so would require the use of popup forms which isn’t possible here due to the simultaneous use of 2 forms
in example forms 1-4

http://www.accessforums.net/showthread.php?t=75572
https://www.access-programmers.co.uk/forums/showthread.php?t=302641

Mendip Data Systems Page 2 of 8 Updated 21/02/2019

There are many complications that need to be managed for this to work well:

1. Units of measurement – twips, pixels and points

The position of objects in the Access window is determined in twips (one twentieth of imperial point size)
where 1440 twips = 1 inch or 567 twips = 1 cm

The x-y coordinates of the top left of the application window are 0, 0

However, the position of the mouse cursor is measured in pixels with reference to the overall screen:

• 1 pixel (px) = 15 twips so 96px = 1440 twips = 1 inch

Font size is measured in points (pt) where 1 point = 20 twips
A 72 point font = 1 inch = 1440 twips = 96px ;
12pt = 16px = 240 twips = 1/6 inch, 3 points = 60 twips = 4 px etc

Complications arise with font sizes that are not factors of 72. For example:

• 11 pt font =220 twips = 14.667 px but as you cannot have a part pixel that actually requires 15 px

• 10 pt font =200 twips = 13.33px so this takes up 14px which is a significant difference
For further info, see https://websemantics.uk/tools/convert-pixel-point-em-rem-percent/

This makes pt => px conversions difficult to do precisely and can lead to errors on the screen

There are three main ways of doing this conversion:

• Use conversion values as above with arbitrary corrections to align objects as well as possible
This may be adequate for a selected font name & size but is very likely to be inaccurate if either / both
of these are altered.

• Use values calculated by a direct points/pixels to twips conversion based on code such as the
ConvertToTwipsYFromPoint function based on the widely used GetSystemMetrics API.
This manages the inexact conversion between 72 points and 96 pixels per inch by building in a 'jump'
every 3 points

This approach can work reasonably well for some standard fonts between about 10pt & 14pt.

https://websemantics.uk/tools/convert-pixel-point-em-rem-percent/

Mendip Data Systems Page 3 of 8 Updated 21/02/2019

However, it gets increasingly inaccurate for much larger/smaller fonts. It also makes no allowance for
certain fonts e.g. Comic Sans being taller than the normal value for that point size.
The image below shows a capital A in 13 different standard Windows fonts - all are 72 points

Stephen Lebans uses an enhanced version of this code in several example applications such as
o http://www.lebans.com/SelectRow.htm
o http://www.lebans.com/textwidth-height.htm

The code I originally developed was partly based on the second example above.
I am always amazed by Stephen's ability to do things that us mere mortals would never achieve alone.
Even so, the results using his code are not perfect for all situations

• A MUCH better method makes use of the little known VBA WizHook function. This actually measures
the height and width of a character string based on the font name, font style normal, italic etc.
This approach should ALWAYS work no matter what the situation.
My tests confirmed that to be so.

The issue with WizHook is that it is a hidden function which has been available for over 20 years but is
not documented by Microsoft. In theory it could be removed in a future release, but as it is used in some
built-in wizards, I believe that to be highly unlikely

However, there is very little information about this function online apart from:

• http://www.mvp-access.es/juanmafan/wizhook/wizhook.htm (in Spanish)

• ftp://developpez.com/cafeine/access/access_wizhook.pdf

2. Form components

In order to locate an object precisely on / over a specific control on a different form, we need to know the
size and position of each component of a form – not all items will be present depending on form settings.
The application calculates ALL of these items for use as required

http://www.lebans.com/SelectRow.htm
http://www.lebans.com/textwidth-height.htm
http://www.mvp-access.es/juanmafan/wizhook/wizhook.htm
ftp://developpez.com/cafeine/access/access_wizhook.pdf

Mendip Data Systems Page 4 of 8 Updated 21/02/2019

3. Using the example application
The example application includes an Images folder
For the purposes of this example, this needs to be a subfolder of the example app

The size of the navigation pane, ribbon and application window can all be controlled from the startup form.

There are 6 test forms available:

Forms 1 - 3 (Single / Continuous / Continuous Subform)
Each of these is designed show how a zoom box can be used to view the entire contents of a standard
textbox when it is too large to fit in the available space.

Each form has 2 textboxes and several different options that can be applied
Double click either textbox. The zoom box is opened / moved directly below the textbox.

Mendip Data Systems Page 5 of 8 Updated 21/02/2019

The zoom box should align closely whether or not record selectors / navigation buttons / scrollbars are used.
Similarly, the border style should have no effect on the alignment.

Typical code (this is taken from Form2)

Private Sub Text0_DblClick(Cancel As Integer)

 'close zoom form if open
 If CurrentProject.AllForms("frmZoom").IsLoaded = True Then DoCmd.Close acForm, "frmZoom"

 strText = Nz(Me.Text0, "")
 strCaption = "Text0 "

 'check record containing text has been clicked
 If Nz(Me.RecNum, "") <> "" And strText <> "" Then
 intLeft = Me.WindowLeft + Me.Text0.Left + intRecSelWidth

 'check if subform
 If IsSubform Then

intBase = intTitleBarHeight + intHeightHeader + Me.WindowTop + Me.Text0.Top + Me.Text0.Height _
+ (Me.RecNum - 1) * Me.Detail.Height - intNavBarHeight - intBorderHeight

 Else
 intBase = intTitleBarHeight + intHeightHeader + Me.WindowTop + Me.Text0.Top + Me.Text0.Height _

+ (Me.RecNum - 1) * Me.Detail.Height
 End If

 'open / move the form
 DoCmd.OpenForm "frmZoom"
 Forms!frmZoom.Move intLeft, intBase
 End If

End Sub

Mendip Data Systems Page 6 of 8 Updated 21/02/2019

Forms 4 & 5 - Listboxes
The listbox selection opens / moves another popup form or displays an image for the selected/highlighted
record. The actions can be controlled using mouse move or a mouse click

As stated earlier in this article, records are NOT selected when moving the mouse over the listbox

Instead, code is used to determine the listbox position based on the calculated height of each listbox row and
the mouse cursor position. The listbox row height depends on several things including font name, point size
and the 1 pixel (15 twips) space left between each row for legibility.

To complicate matters, the first row is 45 twips (3 pixels) taller than all following rows.
That happens whether or not column headers are displayed!

That information is used to highlight the record under the cursor so the data in the listbox record can be
‘read’ just as if it had been selected by clicking

Options – mouse move code can be enabled / disabled
Listbox options – column headers on/off ; change font name and font size, normal or italic style

Mendip Data Systems Page 7 of 8 Updated 21/02/2019

In both forms, the height of each listbox row is calculated using code like this:

Private Function GetListboxRowHeight()
 'Wizhook converts row height perfectly
 WizHook.Key = 51488399
 Dim lx As Long, ly As Long ‘width & height of character string
 Dim LBRH As Long ‘LBRH = listbox row height in twips

 With Me.lstContacts ‘listbox name
 If WizHook.TwipsFromFont(.FontName, .FontSize, .FontWeight, .FontItalic, .FontUnderline, 0, _

"ABCghj", 0, lx, ly) = True Then
 LBRH = ly + 15 'font height +15 twips (1px space between rows)
 End If
 End With

End Function

This is used in the listbox mouse move code to determine the ‘current’ record for highlighting / ‘reading’.
For example:

Private Sub lstImages_MouseMove(Button As Integer, Shift As Integer, x As Single, y As Single)
 'get record in listbox by moving over record
 'LBRH =listbox row height - calculated in GetListboxRowHeight procedure

 If LBRH = 0 Then Exit Sub
 Screen.MousePointer = 1 'arrow- helps prevent flicker

 intColumnHeads = Me.lstImages.ColumnHeads 'are column headers visible?
 '-1 if true, 0 if false so subtracting it adds 1 if headers shown
 ‘deduct 45 to allow for larger top row
 lstPos = ((y - 45) \ LBRH) + 1 + intColumnHeads

 If lstPos <> OldlstPos Then 'cursor has moved
 LC = Me.lstImages.ListCount + intColumnHeads '-1 to allow for header
 Me.lstImages.Selected(lstPos - 1 - intColumnHeads) = True 'highlight on mouse move

 'get image path

 strPath = Nz(DLookup("FileName", "tblImages", "ID=" & lstPos), "") & "." & _
Nz(DLookup("FileType", "tblImages", "ID=" & lstPos), "")

 If strPath <> "." Then
 Me.lblFileName.Caption = strPath
 strPath = CurrentProject.Path & "\Images\" & strPath
 Me.Image1.Picture = strPath
 End If

 'show image if in list
 If lstPos > 0 And lstPos <= LC Then
 Me.lblImage.Visible = True
 Me.Image1.Visible = True
 Me.lblFileName.Visible = True
 Else
 Me.lblImage.Visible = False
 Me.Image1.Visible = False
 Me.lblFileName.Visible = False

 'deselect all records if move beyond end of list
 For N = 1 To Me.lstImages.ListCount
 Me.lstImages.Selected(N) = False
 Next

Mendip Data Systems Page 8 of 8 Updated 21/02/2019

 End If
 OldlstPos = lstPos
 End If

 Screen.MousePointer = 0 'reset to default
End Sub

Form 6 - coordinate display
This shows how coordinates can be updated as a control is moved on a form (using ‘nudge’ buttons) or as
the form is moved around the screen

Each ‘nudge’ moves both textbox and label by 10 twips in the direction of the arrow.
The ‘home’ button restores the original position

4. Current and future developments

I hope this example application will prove useful to others

I have been successfully using the movable zoom box form for a few years with several of my applications
I also have a few ideas for deploying the listbox mouse move highlight & 'select' code in real world
applications of my own.

I would be very interested in user feedback about how this code can be applied in other Access applications

5. Acknowledgements:
I am extremely grateful for the valuable assistance provided by the following:

• Stephens Lebans – various conversion functions partly based on the GetSystemMetrics API

• AccessForums.net member Ajax (Chris Arnold) for various improvements to prevent screen flicker with
the mouse move code used in the listbox example forms 4 & 5

• AccessForums.net member daolix for alerting me to the use of the WizHook function for this example

	Move Forms & Controls Example
	1. Units of measurement – twips, pixels and points
	2. Form components
	3. Using the example application
	4. Current and future developments
	I hope this example application will prove useful to others
	I have been successfully using the movable zoom box form for a few years with several of my applications
	I also have a few ideas for deploying the listbox mouse move highlight & 'select' code in real world applications of my own.
	5. Acknowledgements:

